In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity

GM Lynn, R Laga, PA Darrah, AS Ishizuka… - Nature …, 2015 - nature.com
GM Lynn, R Laga, PA Darrah, AS Ishizuka, AJ Balaci, AE Dulcey, M Pechar, R Pola…
Nature biotechnology, 2015nature.com
The efficacy of vaccine adjuvants such as Toll-like receptor agonists (TLRa) can be
improved through formulation and delivery approaches. Here, we attached small molecule
TLR-7/8a to polymer scaffolds (polymer–TLR-7/8a) and evaluated how different
physicochemical properties of the TLR-7/8a and polymer carrier influenced the location,
magnitude and duration of innate immune activation in vivo. Particle formation by polymer–
TLR-7/8a was the most important factor for restricting adjuvant distribution and prolonging …
Abstract
The efficacy of vaccine adjuvants such as Toll-like receptor agonists (TLRa) can be improved through formulation and delivery approaches. Here, we attached small molecule TLR-7/8a to polymer scaffolds (polymer–TLR-7/8a) and evaluated how different physicochemical properties of the TLR-7/8a and polymer carrier influenced the location, magnitude and duration of innate immune activation in vivo. Particle formation by polymer–TLR-7/8a was the most important factor for restricting adjuvant distribution and prolonging activity in draining lymph nodes. The improved pharmacokinetic profile by particulate polymer–TLR-7/8a was also associated with reduced morbidity and enhanced vaccine immunogenicity for inducing antibodies and T cell immunity. We extended these findings to the development of a modular approach in which protein antigens are site-specifically linked to temperature-responsive polymer–TLR-7/8a adjuvants that self-assemble into immunogenic particles at physiologic temperatures in vivo. Our findings provide a chemical and structural basis for optimizing adjuvant design to elicit broad-based antibody and T cell responses with protein antigens.
nature.com